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LIQUID CRYSTALS, 1994, VOL. 16, No. 6, 1015-1025 

Study of an anisotropic lattice model with 
interactions of rank higher than four 

by S .  ROMANO? 
Dipartimento di Fisica 'A. Volta' Universita di Pavia 

via A, Bassi 6, 1-27100 Pavia, Italy 

(Received 9 August 1993; accepted 4 October 1993) 

We have considered a classical system, consisting of cylindrically symmetric 
particles, associated with a three-dimensional, simple cubic lattice, and interacting 
via nearest neighbour pair potentials of the form 

W= Wjk= -EP,(U~'U~), L=6,8; 

here P, is a Legendre polynomial of order L, E is a positive constant setting the 
temperature and energy scales, and u j  and uk denote the unit vectors defining 
particle orientations. These potential models have been studied previously in the 
literature by means of molecular field theory; we report here two-site cluster results 
for L = 6,8 and Monte Carlo simulation results for L = 6. Comparison shows that 
the two-site cluster approximation produces an overall qualitative improvement 
over molecular field theory. 

1. Introduction 
When developing the statistical mechanical formalism for mesogenic systems, one 

often starts from some simple and somehow reasonable functional form of the pair 
potential, since the pair potential in a real system is usually unknown; as additional 
simplifications, particles are usually assumed to be rigid and often to possess cylindrical 
symmetry. In addition to this approach, which has proved to be quite fruitful, in the last 
few years another line of research has emerged, i.e. the production of realistic potential 
models for specific molecules (including atom-atom interactions and intramolecular 
terms), and their usage in simulation studies C1-41, although, at present, at heavy 
computational costs. 

A few classes of potential models have proved to be mathematically and 
computationally tractable, possibly at various levels of approximation (sometimes at  
the cost of drastic simplifications) and yet capable of reproducing at least salient 
features of mesophasic behaviour: these are lattice models, hard non-spherical bodies 
(see, for example, [5-13]), and the potential model proposed by Gay and Berne [14], 
also extensively used in simulation studies (see, for example [15-171). Lattice models 
(which are more easily tractable) have mostly been used for nematogens only, whereas 
the other two kinds of model can produce a rich variety of structural behaviour 
[9, l i ,  12,14171. Among lattice models, the nearest-neighbour potential defined by 

w= w j k  = - &P,(cos y), cos y = uj'uk, & > 0, (1) 

was proposed by Lebwohl and Lasher some 20 years ago [18,19], and since then it has 
been extensively studied; here P2 is a second order Legendre polynomial, uj and uk 

t Electronic address: ROMANO@,PAVIA.INFN.IT. 

0267-8292/94 $10.00 0 1994 Taylor & Francis Ltd 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



1016 S. Romano 

denote three-component unit vectors defining particle orientations, and E is a positive 
quantity setting both energy and temperature scales (i.e. T* = kBT/~).  The underlying 
lattice is considered to be a three-dimensional, usually simple-cubic, one. 

The system is rigorously known to possess an orientational ordering transition at  
finite temperature [20], and has been extensively studied using computer simulation 
(for example, [21-241) and a number of other theoretical techniques [25-281; the 
transition has a weak first order character, and the transition temperature is estimated 
to be TX = 1.1232, with an uncertainty of the order of 0.0001 [23,24]. Extensions of the 
Lebwohl-Lasher model to higher-rank interactions of the form 

have been proposed and studied using the molecular field (MF) approximation [29] 
and, for L = 4, also by two-site cluster (TSC) theory and Monte Carlo simulation (MC) 
[30]. Moreoever, both M F  [31] and MC [32] results indicate that, using a potential 
model defined by a linear combination of a predominant P ,  and a minor P,  term, one 
can modulate (both strengthen or weaken) the first order character of the transition by 
a suitable choice of the parameters: for example, the order parameter 8, at the 
transition may be made to range between 0.3 and 0 6  1311. As for the potential models 
in equation (2), M F  results indicate that, upon increasing L, the transition temperature 
is reduced, whereas transition entropy and order parameters at the transition increase, 
i.e. the first-order character of the transition is strengthened. This trend can be 
qualitively understood [29] by recalling that, in M F  theory, the single particle pseudo- 
potential is proportional to an even Lth rank Legendre polynomial PL(t), (t=cosO, 
where 8 is the angle between the individual molecule and the director), and thus it 
possesses ( L  + 2)/2 minima over the argument range [0, n]; as L increases, the potential 
well corresponding to t = f 1 deepens and narrows. For the system, it becomes more 
and more difficult to order along the director because of the existence of these local 
minima, but, on the other hand, when it does eventually order, it suddenly goes to a 
situation of nearly complete alignment 1293. For each potential model, M F  theory 
yields orientational order parameters of various even orders FM, and, for the P ,  model, 
it predicts the existence of a temperature range where P4>P2 [29], as can be 
understood by recalling that P,(O) = - (1 /2), P4(0) = + (3/8), i.e. mutual orthogonal 
orientation of two particles (and hence orthogonal orientation of a single particle with 
respect to the director) can be energetically favoured, but gives a negative contribution 
to P,; this prediction was confirmed by TSC and MC results [30]. For the P, model, 
MF theory predicts Tr =0.751, versus a TSC result of 0.663, and a MC estimate of 
0.645 f 0.005 129,301. Purely sixth- and eigth-rank models produce sizeable order 
parameters at transition (see [29]), in marked contrast to the behaviour found for usual 
thermotropic nematics and for pure P ,  or P, models, where P,  ranges between 0.3 and 
0.5 [23,24,30]. The present paper reports TSC calculations for the sixth- and eight- 
rank models. and MC results for L = 6. 

2. Molecular field and two site cluster treatment 
The M F  treatment [31,33] can be developed for an arbitrary pair potential [34], 

and for the models defined by equation (2) it gives [29,3 11 the following expression for 
the difference in free energy per particle between ordered and isotropic phases: 

(3) PAT = (c/2)Bb2 - log 2 + log 2, 
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Lattice model with higher rank interactions 1017 

Z = Z ,  = EL(0) sin 6 d0 = exp (cPbLPL(t)) dt ,  (4) 

( 5 )  

1: 1 
EL(6)  = exp (cpb,P,(cos 6)). 

Here A* = A/&, B= 1/T*, c is the lattice coordination number (c=6 in our case), and 
Z = Z ,  is the single-particle pseudo-partition function; minimization of the free energy 
with respect to the variational parameter b, gives b, = (PL>z, i.e. 

after solving the consistency equation, energy, specific heat, and orientational order 
parameters can be calculated, and the transition can be identified [29]. 

The molecular field treatment can be refined by using various cluster-variational 
techniques [25,26,35-371, whereby interactions within a finite cluster are treated 
exactly, and those with the rest of the system are accounted for in some molecular field 
way, according to different possible procedures; such approaches were first developed 
for magnetic systems [35-371, and later applied to nematics (for example, [25,26]). For 
the potential model defined by equation (2), the approximate free energy per article at 
the two-site cluster level is given by [30] 

BA; = - (42) In [ + (c - 1) In Z,  

i = J dQZ,  dQ2 exp [Bbdc - l)(PL(cos 6,) + P,(cos 0,)) + BP,(cos y)l, 

(7) 
where i = [, is the two-particle pseudo-partition function 

(8) 

and dR, =sin Oj doj dcjj. The condition of minimum free energy with respect to b, gives 
the consistency requirement 

(PL)z=(1/2)(cPL(cos Q,)+P,(cos 02)1>[. (9) 
After solving for b,, various thermodynamic quantities can be obtained from the free 
energy; for example, the energy per particle is obtained by differentiating the free energy 
with respect to p' and reads 

u* = - (c/2)(T,; (T, = (P,(cos y)>[, (10) 

where the short range order parameter CJ, is equal to the appropriate orientational 
correlation function at nearest neighbour separation; it is also possible to calculate 
various other short range order parameters oM, even M .  The expression for the TSC 
heat capacity is obtained by differentiating the energy with respect to temperature, and 
can be found in [30]; alternatively (and as a valuable check) the specific heat can be 
obtained from the energy by numerical differentiation. 

After solving the consistency equation, one finds a transition where b, goes 
discontinuously to zero, producing a finite jump in energy, specific heat and long range 
order parameters, defined in this context by 

(1 1) p M - _  - ~([P,(cos 0,) + P,(COS e,)]),, even M .  

At each temperature, the value of b, which minimizes the free energy was determined 
numerically, by means of computer routines of the NAG library, which actually took 
into account both the function (equation (7)) and its derivative (equation (9)); for each 
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1018 S. Romano 

value of b,  examined, and after an appropriate transformation, calculation of [ requires 
an integration over three variables, which was carried out using a 32-point gaussian 
formula for each dimension. 

3. Simulation aspects 
Simulations were carried out on a cubic lattice, using periodic boundary conditions, 

and different sample sizes ( N  = n3, a= 8,10,12). Calculations were carried out in 
cascade, in order of increasing temperature, i.e. at each temperature the final 
configuration of the equilibration run was used to start both the production run at the 
same temperature, and the equilibration run at  the next higher one; equilibration runs 
took between 25 000 and 50000 cycles (where one cycle or sweep corresponds to N 
attempted moves), and production runs took between 50 000 and 100 000; sub averages 
for evaluating statistical errors were calculated over macro-steps consisting of 1000 
cycles. Calculated quantities include potential energy, and configurational heat 
capacity from potential energy results, by polynomial least-square fit and analytical 
differentiation of the interpolating function; the statistical errors in the specific heat 
were estimated using the simulation procedure outlined in [30]. We also evaluated long 
range order parameters of various ranks, PL, L = 2,4,6,8; orientational correlation 
functions (OCF) and singlet orientational functions (SODF) were calculated at  selected 
temperatures. Long range order parameters are defined by [38] 

P,  = (P,(cos 8))  (12) 

where 8 is the angle between the individual molecule and the director. Since the system 
is highly ordered, quantities such as P ,  and P ,  had to be calculated, and were obtained 
in the following way: along the MC chain we calculated both the second-rank tensor 

QLp = (3 ( u  ,tu p ) ioc - 6 nJ2 (13) 

and its fourth rank counterpart [23,30,39]; here the subscript loc refers to the current 
configuration; these quantities were accumulated to give macro-step averages, then 
used to calculate P ,  and p4, as discussed elsewhere [23,30,39,40]. Moreover, for every 
sweep we diagonalized the current second-rank ordering tensor, and defined the 
instantaneous director v by the eigenvector associated with the eigenvalue possessing 
the largest magnitude; we then calculated the quantities (P,(U-V)),,,~ and averaged 
them. Both for P,  and P4, estimates obtained according to the two procedures were 
found to agree to within the statistical uncertainties. Since its director is known, the 
analysed configuration can also be used to calculate the SODF [3840]; owing to the 
underlying symmetry, this quantity is an even function of cos 8, and the angle can be 
restricted between 0 and 4 2 ;  the SODF can thus be expanded as 

r -I 

1 + 1 (4m + 1)P2,P,,(c0s 0) 
m t O  

or 

log S(8) = c h2,(cos 8); (1 5 )  
rnzO 

we produced a 1001 bin histogram of S(0) versus cos 8, from which coefficients P,,  and 
h,, were calculated; as a double check, they were also recalculated by a linear least 
square fit. 
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Lattice model with higher rank interactions 1019 

0.5 

Orientational correlation functions [38,39] are defined by 

GL(r) = <PL(uj - u,)), as functions of r = ( x j  - xkl, L= 2,4,6,8, (16) 

I 
0.55 c 

where xk are the dimensionless coordinates of the lattice sites; their values at nearest 
neighbour separation define the short range order parameters, i.e. oL = GL(1). These 
quantities were calculated at selected temperature, by analysing one configuration 
every two sweeps; their plots (see following figures) showed a rapid decay to a limiting 
value consistent with the corresponding order parameter, i.e. 

lim GL(r) = pt. 
r + m  

4. Results 
MC results obtained with different sample sizes were found to agree with each 

other, to within the combined statistical uncertainties. Simulation results for potential 
energy, configurational specific heat and order parameters are plotted in figures 1 to 3, 
where they are compared with TSC predictions, and show evidence of a strong first- 
order transition; the transitional properties are summarized in the table. As for the 
transition temperature and the associated entropy change, there is an ordered phase up 
to TT = 0345 and a disordered one at T* > TT = 0550, and we use UT and Uq to denote 
the corresponding energies. We thus defined T: = 05( TT + T;) & 0.54 T; - TT), and 

2.5 

2 

- U' 

1.5 

1 

0.5 

0 
0 

\ 
0 

O o 0  O O O 

6 

Figure 1. Potential energy: (a) (circles): MC estimates; (b)  (continuous line): TSC results; the 
relative statistical errors on MC estimates are usually smaller than 0.5 per cent. 
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1020 S. Romano 

Figure 2. Configurational specific heat; same meaning of symbols as in the previous figure. 

T' 
Figure 3. Results for the long range order parameters: (a) (circles): P,, MC estimates; (b) 

(squares): P4, MC estimates; (c) (triangles): P,, MC estimates; (d )  (diamonds): H, ,  MC 
estimates; (e) (continuous line): P,, TSC results; ( f )  (dashed line): TSC results; (9) 
(dotted line): F,, TSC results; (h)  (dashed-dotted line): P,, TSC results. 
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Lattice model with higher rank interactions 1021 

Results for transition temperature, order parameters and entropy variation at the transition, 
obtained by MF and TSC treatments, together with their MC estimates and associated 
error bars; MF results were taken from [29]. 

L Tr P ,  p4 p6 P ,  ASJk,  

6 MF 0.581 0.825 0.781 0.786 0664 3.187 
6 TSC 0.532 0.847 0.804 0.799 0.683 2.980 
6 MC 0548 0.81 0.75 0.737 0.598 2.48 

err. 0.003 0.02 0.01 0.006 0.006 0.09 
8 MF 0508 0.926 0.899 0.872 0.854 4.31 1 
8 TSC 0.464 0861 0.824 0.794 0791 3.527 

AU,* = ( U : -  Uy) ,  AS,/k,= AU,*/T,*; the value found for AS,/k, had an associated 
statistical error of k0.03, which we conservatively trebled (as a very crude estimate, 
assuming a specific heat C,/k, x 20 in the ordered region TT < T* < Ty, the uncertainty 
on the transition temperature could produce an additional uncertainty on AU,* as large 
as 01). 

In contrast to other potential models (for example, [30]), we observed a 
pronounced hysteresis: the final configuration of the equilibration run at T t  was used 
as starting point for simulation at TT, and after 400000 cycles, the system was still 
found to be in the disordered phase; we lowered the temperature to T*=0-540, ran 
simulation for further 400 000 macro-steps, and still failed to restore orientational 
order. 

Comparison between MF and TSC treatments (see the table) shows that the TSC 
correction lowers both transition temperature and transition entropy; for L = 6, it 
produces an increase of order parameters at transition, whereas it decreases them for 
L = 8. Comparison with simulation results shows that the TSC treatment underesti- 
mates the transition temperature by 3 per cent, whereas MF overestimates it by 5 per 
cent; both approaches overestimate entropy and order parameters at the transition, but 
TSC treatment changes ASc in the right direction, and, on the whole, produces a 
qualitative improvement over the MF approach. 

MF, TSC and MC results predict that order parameters PL at the transition 
decrease with increasing L, in contrast to with the fourth-rank model [29,30]. TSC 
results for the short range order parameters oL are reported in figure 4; orientational 
correlation functions were calculated at two typical temperatures TT and T:, i.e. just 
below and just above the transition, and are plotted in figures 5 and 6. Both TSC and 
MC results show that, in the ordered region the sequence of short range order 
parameters is g2 > o4 2 o, > (r8 and parallels the sequence at their long range counter- 
parts; in the disordered phase this becomes r76 > c2 > o4 > 08. Here TSC underestimates 
o6 by roughly 15 per cent, and other short range order parameters by as much as 30 per 
cent; G, correlation survives over a few lattice separations. Values of oL were also 
calculated for the P ,  model, and exhibited a similar behaviour: in the ordered region, 
the sequence of short range order parameters was u2 > o4 > rs6 2 c8, again the same as 
for their long range counterparts, and became o8 > o2 > o4 > o6 above the transition 
temperature: in the disordered phase, the predominance of o6 or a8, respectively, can be 
expected from the form of the two-particle pseudo partition function (see equations (7) 
to (10)). 

Since the system was highly ordered, we also tried to calculate the order parameters 
using the single parameter (gaussian) approximation described in [41], but is turned 
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3 0 
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Figure 6. Orientational correlation functions calculated at T* = 0.550: same meaning of 
symbols as in the previous figure. 
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Figure 7. Plots of log,,S(Q) (continuous line) and P,(cos 0) (dashed line) versus cos 0; the SODF 
was calculated at T* =0.545. 
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1024 S. Romano 

out that, whether for MF, TSC or MC results at transitions, no single parameter could 
simultaneously fit their four values. 

The SODF was calculated at  TT, and is shown in figure 7, together with P6(cos 0) 
(we chose to plot log,, S(0) for better visualization); comparison indicates that maxima 
and minima of the two curves fall at the same abscissae, and thus suggests that the h6 
term in equation (15) is predominant (in the MF treatment defined by equation (3) to 
(6), only h6 = b6 is different from zero, and h, accounts for the normalization factor). 
This was confirmed by the coefficients hz, and P,, in the expansion of S(0) (see 
equation(14) and (15)), calculated up to m =  10: h, was found to dominate over all 
others (apart from h,) by a factor as large as one hundred, and the order parameters 
showed a slow decrease with increasing m (for example, PI, =032 and P,, =0.14); on 
the other hand, the quantities h,, did not show a monotonic trend with increasing m; 
the least square approximation to log S(0) obtained by truncating the expansion at  
m = 10 was found to be virtually indistinguishable from the original histogram. The 
sizeable orientational order at the transition is reflected by its strong first order 
character and by the observed hysteresis. 
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